CTX Global Mars Mosaic을 통해 과학자와 대중은 이전과는 전혀 다른 방식으로 지구를 탐험할 수 있습니다. 여기에는 지구상에서 명명된 지리적 기능에 대한 이러한 레이블과 같이 켜거나 끌 수 있는 다양한 데이터 계층이 포함됩니다. 크레딧: NASA/JPL-Caltech/MSSS

과학자와 대중은 모두 다음 데이터를 사용하여 Caltech에서 생성된 붉은 행성의 새로운 글로벌 이미지를 탐색할 수 있습니다.[{” attribute=””>NASA’s Mars Reconnaissance Orbiter.

Caltech has used data from NASA’s Mars Reconnaissance Orbiter to create the highest-resolution global image of Mars ever, a 5.7 terapixel mosaic. The mosaic is designed to be accessible to everyone, from scientists to schoolchildren and the general public, and captures cliffsides, impact craters, and dust devil tracks in stunning detail.

Cliffsides, impact craters, and dust devil tracks are captured in mesmerizing detail in a new mosaic of the Red Planet composed of 110,000 images from NASA’s Mars Reconnaissance Orbiter (MRO). Taken by the veteran spacecraft’s black-and-white Context Camera, or CTX, the images cover nearly 270 square feet (25 square meters) of surface per pixel.

That makes the Global CTX Mosaic of Mars the highest-resolution global image of the Red Planet ever created. If it were printed out, this 5.7 trillion pixel (or 5.7 terapixel) mosaic would be large enough to cover the Rose Bowl Stadium in Pasadena, California.

The product of Caltech’s Bruce Murray Laboratory for Planetary Visualization, the mosaic took six years and tens of thousands of hours to develop. It is so detailed that more than 120 peer-reviewed science papers have already cited a beta version. But the mosaic is also easy enough for anyone to use.

Mars Reconnaissance Orbiter Over Nilosyrtis

NASA Mars Reconnaissance Orbiter passes above a portion of the planet called Nilosyrtis Mensae in this artist’s concept illustration. Credit: JPL/NASA

“I wanted something that would be accessible to everyone,” said Jay Dickson, the image processing scientist who led the project and manages the Murray Lab. “Schoolchildren can use this now. My mother, who just turned 78, can use this now. The goal is to lower the barriers for people who are interested in exploring Mars.”

CTX is among three cameras aboard MRO, which is led by NASA’s Jet Propulsion Laboratory in Southern California. One of those cameras, the High-Resolution Imaging Science Experiment (HiRISE) provides color images of surface features as small as a dining room table. In contrast, CTX provides a broader view of terrain around those features, helping scientists understand how they’re related. Its ability to capture larger expanses of the landscape has made CTX especially useful for spotting impact craters on the surface. A third camera, the Mars Color Imager (MARCI), led by the same team that operates CTX, produces a daily global map of Mars weather at much lower spatial resolution.

Mars Up Close

Snapping away since MRO arrived at Mars in 2006, CTX has documented nearly all of the Red Planet, making its images an optimal starting point for scientists when they’re creating a map. A bit like hunting for a needle in a haystack and putting together a puzzle at the same time, mapmaking requires downloading and sifting through a large selection of images to find those with the same lighting conditions and clear skies.

To create the new mosaic, Dickson developed an algorithm to match images based on the features they captured. He manually stitched together the remaining 13,000 images that the algorithm couldn’t match. The remaining gaps in the mosaic represent parts of Mars that hadn’t been imaged by CTX by the time Dickson started working on this project, or areas obscured by clouds or dust.

Laura Kerber, a Mars scientist at JPL, provided feedback on the new mosaic as it took shape. “I’ve wanted something like this for a long time,” Kerber said. “It’s both a beautiful product of art and also useful for science.”

Kerber recently used the image to visit her favorite spot on Mars: Medusae Fossae, a dusty region about the size of Mongolia. Scientists are unsure exactly how it formed; Kerber has proposed it might be a pile of ash from a nearby volcano. At the click of a button on the CTX mosaic, she can zoom in and admire ancient river channels, now dry, winding through the landscape there.

Users can also jump to regions like Gale Crater and Jezero Crater – areas being explored by NASA’s Curiosity and Perseverance rovers – or visit Olympus Mons, the tallest volcano in the solar system, adding topographic data from NASA’s Mars Global Surveyor mission. One of the mosaic’s coolest features highlights impact craters across the entire planet, allowing viewers to see just how scarred Mars is.

“For 17 years, MRO has been revealing Mars to us as no one had seen it before,” said the mission’s project scientist, Rich Zurek of JPL. “This mosaic is a wonderful new way to explore some of the imagery that we’ve collected.”

The mosaic was funded as part of NASA’s Planetary Data Archiving, Restoration and Tools (PDART) program, which helps develop new ways to use existing NASA data. The scientific products of extended missions like MRO are exactly what the program was designed to make more accessible.

More About MRO

MRO is managed by JPL on behalf of NASA’s Science Mission Directorate in Washington, with Caltech acting as JPL’s managing agent for NASA. The University of Arizona in Tucson operates HiRISE, which was constructed by Ball Aerospace & Technologies Corp in Boulder, Colorado. Malin Space Science Systems, headquartered in San Diego, constructed and operates the Context Camera.

READ  고고학자들은 호모 사피엔스가 건설하지 않은 50만 년 된 목조 구조물을 발견했습니다.
답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

남극 대륙의 괴물 우주 암석은 100년 만에 가장 큰 것 중 하나입니다.

남극에는 있다 너무 많이 운석 사냥에 관해서. 짙은 바위가 얼어붙은 풍경과 대조를…

25억년 된 사파이어에서 고대 생명체의 흔적 발견

본 연구에서 분석한 사파이어 이미지. 크레딧: 워털루 대학교 세계에서 가장 오래된 유색…

아르헨티나에서 발견 된 공룡은 T-Rex처럼 보입니다.

예술가 멸종 된 사과의 묘사.설명: Jorge Blanco와 척추 동물 고생물학 저널 8…

놀라운 NASA 이미지는 Io의 화산 표면을 보여줍니다.

NASA의 주노 우주선 목성 임무 그녀는 달을 목표로 삼았다, 이오. 목성의 달은…