NASA의 Voyager 2 우주선은 1980년대 행성 플라이 바이 동안 천왕성(왼쪽)과 해왕성(오른쪽)의 이러한 모습을 포착했습니다. 출처: NASA/JPL-Caltech/B. Johnson

쌍둥이자리 천문대 및 기타 망원경으로 관측한 결과 과도한 연무가 나타남[{” attribute=””>Uranus makes it paler than Neptune.

Astronomers may now understand why the similar planets Uranus and Neptune have distinctive hues. Researchers constructed a single atmospheric model that matches observations of both planets using observations from the Gemini North telescope, the NASA Infrared Telescope Facility, and the Hubble Space Telescope. The model reveals that excess haze on Uranus accumulates in the planet’s stagnant, sluggish atmosphere, giving it a lighter hue than Neptune.

행성 해왕성과 천왕성은 질량, 크기 및 대기 구성이 비슷하지만 외형은 현저히 다릅니다. 가시 파장에서 해왕성은 눈에 띄게 파란색이고 천왕성은 더 옅은 청록색 음영입니다. 천문학자들은 이제 두 행성의 색깔이 왜 그렇게 다른지에 대한 설명을 들었습니다.

새로운 연구에 따르면 두 행성에서 발견되는 집중된 연무 층이 해왕성의 유사한 층보다 천왕성에서 더 두껍고 해왕성보다 천왕성의 모습을 “하얗게”합니다.[1] 안개가 끼지 않는다면 분위기 해왕성과 천왕성에서는 둘 다 파란색으로 거의 동일하게 나타납니다.[2]

이 결론은 모델에서 나옵니다.[3] 옥스포드 대학의 행성 물리학 교수인 패트릭 어윈(Patrick Irwin)이 이끄는 국제 팀이 해왕성과 천왕성 대기의 에어로졸 층을 설명하기 위해 개발했다고 합니다.[4] 이 행성의 상부 대기에 대한 이전 조사는 특정 파장에서만 대기의 모양에 초점을 맞추었습니다. 그러나 여러 대기층으로 구성된 이 새로운 모델은 광범위한 파장에 걸쳐 두 행성의 관측과 일치합니다. 새로운 모델은 또한 이전에 메탄과 황화수소 얼음의 구름만 포함하는 것으로 생각되었던 더 깊은 층에 퍼지 입자를 포함합니다.

천왕성과 해왕성의 대기

이 도표는 패트릭 어윈(Patrick Irwin)이 이끄는 과학자 팀이 설계한 천왕성과 해왕성 대기의 세 층의 에어로졸을 보여줍니다. 그래프의 고도계는 10bar 이상의 압력을 나타냅니다.
가장 깊은 층(에어로졸 층-1)은 두껍고 황화수소 얼음과 행성 대기와 햇빛의 상호 작용으로 인한 입자의 혼합물로 구성됩니다.
색상에 영향을 미치는 주요 레이어는 중간 레이어로, 이 레이어는 해왕성보다 천왕성에서 더 두꺼운 안개 입자 레이어(논문에서 에어로졸 레이어-2라고 함)입니다. 팀은 두 행성에서 메탄 얼음이 이 층의 입자에 응결되어 메탄 눈이 내릴 때 입자를 대기 깊숙이 끌어당길 것이라고 생각합니다. 해왕성의 대기는 천왕성보다 더 활동적이고 난류이기 때문에 팀은 해왕성의 대기가 메탄 입자를 연무층으로 이동시켜 눈을 생성하는 데 더 효율적이라고 믿습니다. 이것은 더 많은 연무를 제거하고 해왕성의 연무 층을 천왕성보다 더 얇게 유지합니다. 즉, 해왕성의 파란색이 더 강해 보입니다.
두 레이어 위에는 확장된 안개 레이어(에어로졸 레이어 3)가 아래 레이어와 비슷하지만 더 취약합니다. 해왕성에서는 큰 메탄 얼음 입자도 이 층 위에 형성됩니다.
출처: Gemini International Observatory/NOIRLab/NSF/AURA, J. da Silva/NASA/JPL-Caltech/B. Johnson

지구물리학 연구: 행성 저널(Journal of Geophysical Research: Planets)에서 이 발견을 발표한 연구 논문의 주저자인 Irwin은 “이것은 자외선에서 근적외선까지 반사된 햇빛의 관찰에 동기적으로 맞는 최초의 모델입니다.”라고 설명했습니다. “그는 또한 천왕성과 해왕성의 가시색의 차이를 최초로 설명했습니다.”

팀의 모델은 서로 다른 고도에서 3층의 에어로졸로 구성되어 있습니다.[5] 색상에 영향을 미치는 주요 레이어는 중간 레이어로, 이 레이어는 안개 입자(종이에서는 에어로졸 레이어-2라고 함) 레이어보다 더 두꺼운 레이어입니다. 천왕성해왕성. 팀은 두 행성에서 메탄 얼음이 이 층의 입자에 응결되어 메탄 눈이 내릴 때 입자를 대기 깊숙이 끌어당길 것이라고 생각합니다. 해왕성의 대기는 천왕성보다 더 활동적이고 난류이기 때문에 팀은 해왕성의 대기가 메탄 입자를 연무층으로 이동시켜 눈을 생성하는 데 더 효율적이라고 믿습니다. 이것은 더 많은 연무를 제거하고 해왕성의 연무 층을 천왕성보다 더 얇게 유지합니다. 즉, 해왕성의 파란색이 더 강해 보입니다.

천문학자 마이크 웡(Mike Wong)은[{” attribute=””>University of California, Berkeley, and a member of the team behind this result. “Explaining the difference in color between Uranus and Neptune was an unexpected bonus!”

To create this model, Irwin’s team analyzed a set of observations of the planets encompassing ultraviolet, visible, and near-infrared wavelengths (from 0.3 to 2.5 micrometers) taken with the Near-Infrared Integral Field Spectrometer (NIFS) on the Gemini North telescope near the summit of Maunakea in Hawai‘i — which is part of the international Gemini Observatory, a Program of NSF’s NOIRLab — as well as archival data from the NASA Infrared Telescope Facility, also located in Hawai‘i, and the NASA/ESA Hubble Space Telescope.

The NIFS instrument on Gemini North was particularly important to this result as it is able to provide spectra — measurements of how bright an object is at different wavelengths — for every point in its field of view. This provided the team with detailed measurements of how reflective both planets’ atmospheres are across both the full disk of the planet and across a range of near-infrared wavelengths.

“The Gemini observatories continue to deliver new insights into the nature of our planetary neighbors,” said Martin Still, Gemini Program Officer at the National Science Foundation. “In this experiment, Gemini North provided a component within a suite of ground- and space-based facilities critical to the detection and characterization of atmospheric hazes.”

The model also helps explain the dark spots that are occasionally visible on Neptune and less commonly detected on Uranus. While astronomers were already aware of the presence of dark spots in the atmospheres of both planets, they didn’t know which aerosol layer was causing these dark spots or why the aerosols at those layers were less reflective. The team’s research sheds light on these questions by showing that a darkening of the deepest layer of their model would produce dark spots similar to those seen on Neptune and perhaps Uranus.

Notes

  1. This whitening effect is similar to how clouds in exoplanet atmospheres dull or ‘flatten’ features in the spectra of exoplanets.
  2. The red colors of the sunlight scattered from the haze and air molecules are more absorbed by methane molecules in the atmosphere of the planets. This process — referred to as Rayleigh scattering — is what makes skies blue here on Earth (though in Earth’s atmosphere sunlight is mostly scattered by nitrogen molecules rather than hydrogen molecules). Rayleigh scattering occurs predominantly at shorter, bluer wavelengths.
  3. An aerosol is a suspension of fine droplets or particles in a gas. Common examples on Earth include mist, soot, smoke, and fog. On Neptune and Uranus, particles produced by sunlight interacting with elements in the atmosphere (photochemical reactions) are responsible for aerosol hazes in these planets’ atmospheres.
  4. A scientific model is a computational tool used by scientists to test predictions about a phenomena that would be impossible to do in the real world.
  5. The deepest layer (referred to in the paper as the Aerosol-1 layer) is thick and is composed of a mixture of hydrogen sulfide ice and particles produced by the interaction of the planets’ atmospheres with sunlight. The top layer is an extended layer of haze (the Aerosol-3 layer) similar to the middle layer but more tenuous. On Neptune, large methane ice particles also form above this layer.

More information

This research was presented in the paper “Hazy blue worlds: A holistic aerosol model for Uranus and Neptune, including Dark Spots” to appear in the Journal of Geophysical Research: Planets.

The team is composed of P.G.J. Irwin (Department of Physics, University of Oxford, UK), N.A. Teanby (School of Earth Sciences, University of Bristol, UK), L.N. Fletcher (School of Physics & Astronomy, University of Leicester, UK), D. Toledo (Instituto Nacional de Tecnica Aeroespacial, Spain), G.S. Orton (Jet Propulsion Laboratory, California Institute of Technology, USA), M.H. Wong (Center for Integrative Planetary Science, University of California, Berkeley, USA), M.T. Roman (School of Physics & Astronomy, University of Leicester, UK), S. Perez-Hoyos (University of the Basque Country, Spain), A. James (Department of Physics, University of Oxford, UK), J. Dobinson (Department of Physics, University of Oxford, UK).

NSF’s NOIRLab (National Optical-Infrared Astronomy Research Laboratory), the US center for ground-based optical-infrared astronomy, operates the international Gemini Observatory (a facility of NSF, NRC–Canada, ANID–Chile, MCTIC–Brazil, MINCyT–Argentina, and KASI–Republic of Korea), Kitt Peak National Observatory (KPNO), Cerro Tololo Inter-American Observatory (CTIO), the Community Science and Data Center (CSDC), and Vera C. Rubin Observatory (operated in cooperation with the Department of Energy’s SLAC National Accelerator Laboratory). It is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with NSF and is headquartered in Tucson, Arizona. The astronomical community is honored to have the opportunity to conduct astronomical research on Iolkam Du’ag (Kitt Peak) in Arizona, on Maunakea in Hawai‘i, and on Cerro Tololo and Cerro Pachón in Chile. We recognize and acknowledge the very significant cultural role and reverence that these sites have for the Tohono O’odham Nation, the Native Hawaiian community, and the local communities in Chile, respectively.

READ  SpaceX Dragon은 분석할 과학 상품으로 가득 차 있습니다.
답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

과학자들은 유리 비가 내리는 행성에서 처음으로 태양계 외부 황화수소를 발견했습니다.

로베르토 몰라 칸다노사(Roberto Molar Candanosa)/존스홉킨스대학교 그림은 64광년 떨어진 곳에 위치한 거대 가스…

목성의 붉은 점은 1665년에 관측된 것과 같지 않을 수도 있습니다

1660년대 이탈리아 천문학자 지안 도메니코 카시니(Gian Domenico Cassini)는 목성을 관찰하던 중 무언가를…

화성은 표면 아래에 방사성 마그마 바다를 숨기고 있습니다.

2021년에는 화성이 놀라울 정도로 큰 마음을 품은 것 같습니다. 과학자들은 행성 내부를…

아이오와주에서 COVID-19로 입원한 사람들의 25%가 예방 접종을 받았습니다.

월요일 아이오와 공중보건부가 발표한 최신 COVID-19 데이터는 병원의 감소 추세를 보여주지만, Unity…