케플러-16 b

두 개의 별을 완전히 공전하는 것으로 알려진 최초의 행성인 Kepler-16b에 대한 아티스트의 인상, 이른바 고리 행성입니다. 전경에서 볼 수 있는 이 행성은 NASA의 케플러 임무에 의해 발견되었습니다. 출처: NASA/JPL-Caltech/T. Pyle

이 연구는 지상 망원경이 두 개의 태양을 가진 행성을 찾을 수 있음을 증명합니다.

천문학자들은 새로운 기술을 사용하여 “스타워즈”에서 루크 스카이워커의 고향이었던 두 개의 태양이 있는 가상의 행성인 타투인의 실생활을 확인했습니다.

케플러-16b 행성은 지구에서 약 245광년 떨어져 있으며 크기는 약[{” attribute=””>Saturn. Scientists already knew that the planet existed, but in a recent study, an international team of astronomers explained how they successfully applied a technique that hadn’t been previously used to observe a planet orbiting two stars.

“It’s a confirmation that our method works,” said David Martin, co-author of the study and NASA Sagan Fellow in The Ohio State University’s Department of Astronomy. “And it creates an opportunity for us to apply this method now to identify other systems like this.”

The technique, called the radial velocity method, has long been used in astronomy. (The first planet ever found around a sun-like star was found using radial velocity – and was found using the same telescope astronomers used to find this one.)

The radial velocity method involves analyzing the spectra of light produced by the stars. Astronomers gather spectra data through telescopes on the ground – in this case, from a telescope based in France, the Observatoire de Haute Provence. That spectra data graphs into a line, but the line “wobbles” as the planet orbits around the two stars, producing a shaky line in the spectra of light. The wobble indicates a planet is there, and astronomers can use it to derive a number of other pieces of information about a planet, including its mass.

Measuring radial velocity is, Martin said, among the best tools astronomers have to identify exoplanets, or planets outside our solar system. But until this study, astronomers had not been able to use it to find planets outside our solar system that orbit two stars.

The study was published this week in the Monthly Notices of the Royal Astronomical Society.

In the past, such planets – known as circumbinary planets – were identified by monitoring when one star passed in front of the other. That method, known as the “transit method,” has identified 14 such planets, including Kepler-16b. The first confirmed circumbinary planet was described in a paper in 2011; others have followed. But until this paper, none had been found using radial velocity.

“What people had faced was that having two sets of spectra from two stars makes it really tricky, and people were struggling to get enough precision to see the wobble caused by the planet,” Martin said. “And we got around that by making a survey of systems with two stars that orbit each other where one star is big, and one is quite small.”

The survey, called Binaries Escorted by Orbiting Planets, or BEBOP, was established specifically to search for planets like this one.

One of Kepler-16b’s stars is about two-thirds the mass of Earth’s sun, and the other is about 20% the mass.

Astronomers had been watching this system since July 2016.

Proving that measuring radial velocities can identify planets that orbit two stars, Martin said, opens the door for the technique to be applied more broadly. That is important to astronomers for a number of reasons, but a big one is that planets that orbit two stars tend to exist at a distance that would make them good candidates for life.

READ  멋진 타임랩스 비디오에서 1년 동안 보름달 춤을 감상하세요.

“These planets are frequently found in the habitable zone, at a distance from the stars where you would expect to find liquid water,” Martin said.

Kepler-16b, which is made primarily of gas, is not likely to be a candidate where life could be found, Martin said. But using the radial-velocity method could help astronomers find other similar planets.

Reference: “BEBOP III. Observations and an independent mass measurement of Kepler-16 (AB) b – the first circumbinary planet detected with radial velocities” by Amaury H M J Triaud, Matthew R Standing, Neda Heidari, David V Martin, Isabelle Boisse, Alexandre Santerne, Alexandre C M Correia, Lorena Acuña, Matthew Battley, Xavier Bonfils, Andrés Carmona, Andrew Collier Cameron, Pía Cortés-Zuleta, Georgina Dransfield, Shweta Dalal, Magali Deleuil, Xavier Delfosse, João Faria, Thierry Forveille, Nathan C Hara, Guillaume Hébrard, Sergio Hoyer, Flavien Kiefer, Vedad Kunovac, Pierre F L Maxted, Eder Martioli, Nicola J Miller, Richard P Nelson, Mathilde Poveda, Hanno Rein, Lalitha Sairam, Stéphane Udry and Emma Willett, 25 February 2022, Monthly Notices of the Royal Astronomical Society.
DOI: 10.1093/mnras/stab3712

Martin’s portion of this work was funded in part by NASA.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

조사중인 청소년의 COVID-19 백신 후 심장 염

보건 당국은 여러 유형의 감염과 함께 발생할 수있는 심장 염증이 두 번째…

헌터스문에 대해 무엇을 알고 있으며 이번 주말에 어떻게 볼 수 있나요?

이 이야기에 댓글 달기논평 저장된 스토리에 추가 암기하다 사람들이 자신이 좋아하는 캐릭터로…

SpaceX는 오늘 밤 두 개의 우주선을 달에 발사할 예정입니다.

확대 / Falcon 9 선물에 포장된 Hakuto-R 우주선. 아이스페이스 올해 하반기는 달에게…

Tiangong: 중국은 NASA가 주도하는 국제 우주 정거장에 대한 대안을 제시하면서 우주 정거장의 크기를 두 배로 늘리고 있습니다.

비용 사진/norphoto/게티 이미지 2023년 9월 26일 상하이 세계 수도 디자인 컨퍼런스 2023에…