Scientists have determined the source of the huge glow that swept our solar system.

The discovery could help us understand gamma-ray bursts, the most powerful in the universe.

Earth experiences both light and short bursts of gamma rays regularly on most days. But massive eruptions rarely happen, like the newly examined GRB 200415A, which brings with it more powerful energy from our sun.

The glow appears to have appeared from an unusually strong neutron star known as a magnetic star, according to scientists in new results published in Natural Astronomy.

“Our sun is a very normal star. When it dies, it will grow up and become a giant red star. Then it will collapse into a small compact star called the white dwarf,” said Swibor Razaki of the University of Johannesburg, who led the research.

“But stars that are much larger than the Sun play a different endgame.”

Instead, such stars explode in a supernova and then leave behind a small, compact star known as a neutron star. It’s small – it can be packed into a 12-mile space – yet so dense that a spoonful weighs tons.

The new search began in April of last year – on the morning of April 15th – when a giant glow swept across Mars. It was picked up by a network of satellites including the International Space Station, which led to the start of the research published today.

When GRB 200415A passed the Earth, it was not the first such explosion to be detected on Earth. But it was unusual in a number of helpful ways, including the fact that it came from much closer to us than usual.

It was also the first giant glow to be captured since the Fermi Gamma-ray Space Telescope launched in 2008. This means that the researchers were able to collect massive amounts of data in 140 milliseconds that lasted, giving them a much better picture than a previous visitor who arrived 16 years ago.

And when the researchers were able to pinpoint the cause, they found it also unusual: It came from a magnetic star. There are only 30 of these known objects in our entire Milky Way galaxy, made up of tens of thousands of neutron stars, and they could be a thousand times magnetic than normal neutron stars.

The galaxy from which the glow came is outside our own Milky Way, but only on a galactic scale. It’s just 11.4 million light-years away.

Scientists hope to be able to find and research it in more detail. This can help explain not only the processes that allow for such powerful explosions, but also use them as ways to make sense of our universe’s story.

Professor Razzaq said in a statement: “Despite the gamma ray bursts from one star, we can discover them from a very early time in the history of the universe. Even going back to a time when the universe was a few hundred million years old.”

“This is at a very early stage in the evolution of the universe. Stars that died at that time … We are now only discovering gamma-ray bursts because light takes time to travel.

“This means that gamma-ray bursts can tell us more about how the universe has expanded and evolved over time.”

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

지구상에서 가장 오래된 생명체인 LUCA의 비밀을 밝혀보세요

LUCA가 실제로 42억년 전에 어떻게 바이러스의 공격을 받았는지 보여주는 디지털 표현입니다. 저작권:…

MIT 연구원들은 반짝이는 물체를 일종의 카메라로 바꾸는 새로운 컴퓨터 비전 시스템을 선보입니다. 관찰자가 모퉁이를 돌거나 장애물 뒤를 볼 수 있습니다.

https://arxiv.org/abs/2212.04531 물체의 반사를 통해 사람의 주변 환경에 대한 가치 있고 종종 숨겨진…

제임스 웹 우주 망원경은 초기 우주를 내다보고 우리 은하와 같은 은하를 봅니다.

이 시뮬레이션은 항성 막대(왼쪽)와 막대 구동 가스 흐름(오른쪽)이 어떻게 형성되는지 보여줍니다. 스텔라…

스티브는 오로라처럼 보이지만 그렇지 않습니다. • Earth.com

생생한 녹색, 빨간색, 보라색 커튼이 드리워진 매혹적인 오로라는 오랫동안 밤하늘 관찰자들을 사로잡았습니다.…