InSight가 설명과 함께 화성의 내부 층을 연구하는 방법

NASA의 Mars Insight 탐사선은 지진계를 사용하여 화성의 내부 층을 연구합니다. 지진 신호는 다양한 유형의 물질을 통과할 때 지진으로 인해 변경됩니다. 지진학자들은 지진계의 흔들림을 “읽을” 수 있어 행성의 지각, 맨틀, 핵의 특성을 연구할 수 있습니다. 크레딧: NASA/JPL-Caltech

InSight 임무 팀은 결과적으로 착륙 전력이 곧 고갈되기는 하지만 이전에 계획한 것보다 더 오래 지진계를 작동하기로 결정했습니다.

사용할 수 있는 힘으로[{” attribute=””>NASA’s InSight Mars lander diminishes by the day, the spacecraft’s team has revised the mission’s timeline in order to maximize the science they can conduct. The lander was projected to automatically shut down the seismometer – InSight’s last operational science instrument – by the end of June in order to conserve energy, surviving on what power its dust-laden solar panels can generate until around December.

NASA InSight's Final Selfie

NASA’s InSight Mars lander took this final selfie on April 24, 2022, the 1,211th Martian day, or sol, of the mission. The lander is covered with far more dust than it was in its first selfie, taken in December 2018, not long after landing – or in its second selfie, composed of images taken in March and April 2019. Credit: NASA/JPL-Caltech

Instead, the team now plans to program the lander so that the seismometer can operate longer, perhaps until the end of August or into early September. Doing so will discharge the lander’s batteries sooner and cause the spacecraft to run out of power at that time as well, but it might enable the seismometer to detect additional marsquakes.

“InSight hasn’t finished teaching us about Mars yet,” said Lori Glaze, director of NASA’s Planetary Science Division in Washington. “We’re going to get every last bit of science we can before the lander concludes operations.”


The InSight team will be available to answer your questions directly on June 28 at 3 p.m. EDT (noon PDT) during a livestream event on YouTube. Questions can be asked using the #AskNASA hashtag.


InSight (short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) is in an extended mission after achieving its science goals. The lander has detected more than 1,300 marsquakes since touching down on Mars in 2018, providing information that has allowed scientists to measure the depth and composition of Mars’ crust, mantle, and core. With its other instruments, InSight has recorded invaluable weather data, investigated the soil beneath the lander, and studied remnants of Mars’ ancient magnetic field.

InSight First Selfie Mars

This is NASA InSight’s first full selfie on Mars. It displays the lander’s solar panels and deck. On top of the deck are its science instruments, weather sensor booms, and UHF antenna. The selfie was taken on December 6, 2018 (Sol 10). Credit: NASA/JPL-Caltech

All instruments but the seismometer have already been powered down. Like other Mars spacecraft, InSight has a fault protection system that automatically triggers “safe mode” in threatening situations and shuts down all but its most essential functions, allowing engineers to assess the situation. Low power and temperatures that drift outside predetermined limits can both trigger safe mode.

To enable the seismometer to continue to run for as long as possible, the mission team is turning off InSight’s fault protection system. While this will enable the instrument to operate longer, it leaves the lander unprotected from sudden, unexpected events that ground controllers wouldn’t have time to respond to.

InSight Selfie

This is NASA InSight’s second full selfie on Mars. Since taking its first selfie, the lander has removed its heat probe and seismometer from its deck, placing them on the Martian surface; a thin coating of dust now covers the spacecraft as well. This selfie is a mosaic made up of 14 images taken on March 15 and April 11 – the 106th and 133rd Martian days, or sols, of the mission – by InSight’s Instrument Deployment Camera, located on its robotic arm. Credit: NASA/JPL-Caltech

“The goal is to get scientific data all the way to the point where InSight can’t operate at all, rather than conserve energy and operate the lander with no science benefit,” said Chuck Scott, InSight’s project manager at NASA’s Jet Propulsion Laboratory in Southern California.

Regular updates on InSight’s power and observations from mission team members will appear on blogs.nasa.gov/insight.

The InSight team will also be available to answer your questions directly on June 28 at 3 p.m. EDT (noon PDT) during a livestream event on YouTube. Questions can be asked using the #AskNASA hashtag.

More About the Mission

JPL manages InSight for NASA’s Science Mission Directorate. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.

READ  단일 사건 섭동: 우주 공간의 순열 조각에서 나오는 고에너지 입자
답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

NASA의 첨단 태양돛이 우주에 성공적으로 배치되었습니다: ScienceAlert

태양돛은 우주만(灣)을 여행하는 신비롭고 장엄한 방법입니다. 과거 범선에 비해 우주에서 차량을 추진하는…

새로운 러시아 로켓 유닛 발사 후 기울어진 우주 정거장

새로운 러시아 부대의 도킹 후 몇 시간 국제 우주 정거장 목요일에, 그것은…

SpaceX Dragon 캡슐은 승무원 3명의 우주비행사를 안전하게 지구로 돌려보냅니다.

SpaceX Crew-3 임무의 일환으로 국제 우주 정거장을 여행한 우주비행사들이 궤도 실험실에서 거의…

목성의 위성 유로파에 생명체가 존재할 가능성이 많이 높아졌다

인간은 항상 별을 바라보았고 외계 생명체가 우리를 우러러볼 것이라고 기대했습니다. 그러나 사실은…