Seeing our world through the eyes of a migratory bird would be a somewhat frightening experience. Something about their visual system allows them to “see” the magnetic field of our planet, a clever trick in quantum physics and biochemistry that helps them travel vast distances.

Now, for the first time ever, scientists from the University of Tokyo have observed a major interaction that is supposed to be behind the talents of birds and many other creatures to sense the direction of the planet’s poles.

Importantly, this is evidence that quantum physics directly affects a biochemical reaction in the cell – something we assumed long ago but never witnessed before.

Using a specially designed microscope sensitive to faint flashes of light, the team observed a culture of human cells containing a special light-sensitive substance that dynamically responds to changes in the magnetic field.

400152132The fluorescence of the cell darkens as a magnetic field passes over it. (Ikea Woodward, CC BY)

The change the researchers observed in the laboratory matched what would be expected if the quirky quantum effect were responsible for the luminous reaction.

“We have not modified or added anything to these cells,” Says Biophysicist Jonathan Woodward.

“We think we have very strong evidence that we observed a purely mechanical quantum process affecting chemical activity at the cellular level.”

So how can cells, especially human cells, respond to magnetic fields?

While there are many hypotheses, many researchers believe that this ability is due to a unique quantum interaction involving photoreceptors called cryptochromes.

Cyrptochromes are found in the cells of many species and are involved in regulating circadian rhythms. In bird, dog, and other migratory species, it is associated with the mysterious ability to sense magnetic fields.

READ  종 풍부성의 비밀을 밝혀내세요

In fact, while most of us cannot see magnetic fields, our cells certainly do Contain cryptochromes. There is evidence that although unconscious, humans have still been able to discover the Earth’s magnetism.

To see the reaction inside the cyrptochromes in action, the researchers doused a culture of human cells containing cryptochromes in blue light causing them to fluoresce weakly. As they glowed, the team repeatedly traversed magnetic fields of different frequencies above the cells.

They found that every time a magnet passed over the cells, their fluorescence decreased by 3.5 percent – enough to show a direct reaction.

How can a magnetic field affect photoreceptors?

It all comes down to something called spin – an innate property of electrons.

We already know that rotation is greatly affected by magnetic fields. Arrange the electrons in the correct way around the atom, and collect enough of them together in one place, and the resulting mass of matter can be made to move using anything more than a weak magnetic field such as the one surrounding our planet.

This is all well and good if you want to make a navigational compass needle. But with no clear signs of magnetically sensitive parts inside the skulls of pigeons, the physicists had to think smaller.

In 1975A researcher at the Max Planck Institute called Klaus Schulten has developed a theory about how magnetic fields influence chemical reactions.

It included something called a root pair.

A garden variety root is an electron in the outer shell of an atom that does not bind to a second electron.

READ  천체 물리학은 Planet Nine이 숨길 새로운 장소를 제안합니다.

Sometimes these celibate electrons can adopt the winged bird of another atom to form a root pair. The two remain unpaired but thanks to a shared history they are considered intertwined, which in quantitative terms means that their rotations will coincide frighteningly regardless of the distance between them.

Since this correlation cannot be explained by continuous physical connections, it is purely quantitative activity, something Albert Einstein considered “frightening”.

In the bustle of a living cell, their entanglement will be fleeting. But even these interconnected spins for a short time must last long enough to make a subtle difference in the way their parent atoms behave.

In this experiment, as the magnetic field passes over the cells, the corresponding decrease in fluorescence indicates that the generation of root pairs was affected.

One of the exciting findings of the research could be how weak magnetic fields can indirectly affect other biological processes. While the evidence for magnetism affecting human health is weak, similar experiments could be another means of investigation.

“The interesting thing about this research is that we see that the relationship between the rotation of two individual electrons can have a major impact on biology.” Says Woodward

Of course birds aren’t the only animal to rely on our magnetosphere for direction. Types of fish and worms InsectsAnd even some mammals have a knack for it. We humans may be cognitively affected by the Earth’s faint magnetic field.

The development of this ability could have introduced a number of vastly different actions based on different physics.

Evidence that at least one of them links the weirdness of the quantum world to the behavior of an organism is enough to force us to question the other parts of biology that arise from the frightening depths of fundamental physics.

READ  선명한 사진! James Webb 우주 망원경은 거대한 랜드마크에서 정렬을 완료합니다.

This research was published in PNAS.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

Mastodon의 송곳니는 북미의 이주 패턴을 보여줍니다

마스토돈 화석은 1998년 농장에서 토탄을 발굴하던 Kent와 Jean Pesheng에 의해 처음 발견되었습니다.…

미국의 전염병은 극적으로 개선되었습니다. 이 가족들에게 최악의 상황은 이제 막 시작되었습니다.

지금 죽어가는 가족들에게 전체 예방 접종 문제는 새로운 차원의 불편 함을 불러…

연구 : 비만 엄마의 아기는 지방간 질환에 걸릴 가능성이 더 높습니다

연구자들에 따르면 비만 산모의 아이들은 20 대에 지방간 질환에 걸릴 위험이 더…

과학자들이 인류의 미래를 위협하는 진화의 함정 14가지를 발견했습니다

새로운 연구에 따르면 인류는 기후 변화부터 인공 지능까지 ‘진화의 함정’이라고 불리는 14가지…