Milky Way Star Streams

Artistic display of general stellar currents in the Milky Way. Credit: NASA / JPL-Caltech / R. Hurt, SSC and Caltech

Examination of Theia 456 discovered that approximately 500 stars were born at the same time.

The Milky Way It houses 8,292 recently discovered star streams – all called Theia. But Theia 456 is special.

A stellar stream is a rare linear – rather than clustered – pattern of stars. After combining multiple data sets captured by the Gaia Space Telescope, a team of astrophysicists found that all 468 of Theia’s 456 stars were born at the same time and travel in the same direction across the sky.

Jeff Andrews A. Most star clusters form together. Northwestern University Astrophysicist and team member. “What’s interesting about Theia 456 is that it’s not a small group of stars together. It’s long and stretchy. There are relatively few streams close and young and scattered widely.”

Andrews presented this research during a hypothetical press conference at the 237th meeting of the American Astronomical Society. Theia 456: A Stellar Association in the Galactic Disk took place on January 15, 2021, as part of a session on the “Modern Milky Way”.

Andrews is a postdoctoral fellow at the Northwestern Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA). He conducted this work with astrophysicists Marcel Aguerus and Jason Curtis Columbia UniversityJulio Chanami of the University of Pontifica Cattolica, Simon Schuller of the University of Tampa, Kevin Covey and Marina Kunkel of Western Washington University.

While researchers have long known that stars form in groups, most known clusters are spherical in shape. It is only recently that astrophysicists began to find new patterns in the sky. They believe that the long strings of stars were once narrow clusters, gradually torn apart and stretched by tidal forces.

“As we started to get more advanced in our hardware, technology, and ability to extract data, we found that stars are in more structures than clusters,” Andrews said. “Often they form streams across the sky. Although we’ve known about these for decades, we have started to find hidden objects.”

Theia 456 spans more than 500 light-years, and is one of those hidden currents. Since it dwells within the galactic plane of the Milky Way, it is easily lost within the galactic background of 400 billion stars. Most of the stellar currents are found elsewhere in the universe – by telescopes directed away from the Milky Way.

“We tend to focus our telescopes in other directions because it’s easier to find things,” Andrews said. “Now we’re starting to find these currents in the galaxy itself. It’s like finding a needle in a haystack. Or, in this case, finding a ripple in the ocean.”

Defining and examining these structures is a challenge to data science. Artificial intelligence algorithms combed huge datasets of stellar data in order to find these structures. Andrews then developed algorithms to refer this data to pre-existing catalogs of the iron abundance of the stars documented.

Andrews and his team found that 468 stars within Thia 456 had a similar abundance of iron, which means that – 100 million years ago – the stars would likely have formed together. To add more evidence to this finding, the researchers examined a dataset of light curves, which captures how the brightness of the stars changes over time.

We are starting to find these currents in the Milky Way itself. It’s like finding a needle in a haystack. Or, in this case, finding an ocean ripple – Geoff Andrews, astrophysicist

“This can be used to measure the speed of rotation of stars,” Agüeros said. “Stars of the same age should show a distinct pattern in their rotation rates.”

READ  새로운 연구: 백신을 접종하지 않으면 COVID에 다시 걸릴 수 있습니까?

With the help of data from NASAThe transiting satellite for exoplanet reconnaissance and from the Zwicky Transit Facility – both of which produced light curves for the stars in Thia 456 – Andrews and colleagues were able to determine that stars in the stream share a common lifetime.

The team also found that the stars move together in the same direction.

“If you know how the stars move, you can step back to see where the stars are,” Andrews said. “As we turned back the clock, the stars became closer and closer together. Therefore, we believe that all of these stars were born together and have a common origin.”

Andrews said combining data sets and data mining is essential to understanding the universe around us.

He said, “You can only reach this limit using one dataset.” “When you combine data sets, you get a richer sense of what’s in the sky.”

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

희귀한 녹색 혜성이 오늘 밤 지구를 통과하는 것을 보는 방법

녹색 빛을 내는 혜성이 오늘 밤(2월 1~2일) 네안데르탈인 이후 지구에 가장 가깝게…

러시아 우주국, 화성에 원자력 발전소 설치 제안

기술 15:36 GMT 11.07.2021(업데이트 된 15:44 GMT 11.07.2021) 짧은 링크 받기 엔지니어들은…

CDC는 모든 NJ는 이제 vax에 관계없이 실내에 숨어야 한다고 말합니다.

연방 기관의 최신 미국 전역 바이러스 전파율 지도에 따르면 뉴저지 주 전체가…

월요일에 뉴저지의 집을 강타한 암석은 그것이 운석임을 확인했습니다.

과학자들은 목요일(5월 11일) 이번 주 초 뉴저지 주 호프웰에 있는 주거용 주택…