2023년 6월 태양 플레어

2023년 6월 20일, 태양은 NASA의 Solar Dynamics Observatory에서 포착한 강력한 태양 플레어를 방출했습니다. 크레딧: NASA/SDO

태양은 오후 1시 9분에 정점에 달하는 강력한 태양 플레어를 방출했습니다.[{” attribute=””>EDT on June 20, 2023. NASA’s Solar Dynamics Observatory, which watches the Sun constantly, captured an image of the event.

A solar flare is a sudden, significant increase in brightness observed near the sun’s surface, typically around a sunspot group. They are a violent eruption of high-energy particles and gases that are ejected from the sun’s magnetic field into space. Solar flares release a lot of energy, ranging from the equivalent of ten million hydrogen bombs to a billion hydrogen bombs.

This flare is classified as an X1.0 flare. X-class denotes the most intense flares, while the number provides more information about its strength.

Solar Flare June 2023

NASA’s Solar Dynamics Observatory captured this image of a solar flare – as seen in the bright flash on the lower left – on June 20, 2023. The image shows a subset of extreme ultraviolet light that highlights the extremely hot material in flares, and which is colorized in yellow. Credit: NASA/SDO

How are Solar Flares Measured

Solar flares are measured in terms of their x-ray intensity in the Earth’s vicinity. The National Oceanic and Atmospheric Administration (NOAA) classifies solar flares in three categories:

  1. X-class flares: These are big; they are major events that can trigger planet-wide radio blackouts and long-lasting radiation storms.
  2. M-class flares: These are medium-sized; they can cause brief radio blackouts that affect Earth’s polar regions. Minor radiation storms sometimes follow an M-class flare.
  3. C-class flares: These are small, with few noticeable consequences here on Earth.

Each class has a tenfold increase in intensity from the last, so an X is ten times an M and 100 times a C.

Effects of Solar Flares on Earth

Solar flares can have a wide range of effects on Earth. Here are a few:

  1. Radio Communication Disruption: When solar flares interact with the Earth’s atmosphere, they can cause disturbances in the Earth’s magnetic field, which can interfere with radio and GPS signals, causing blackouts and navigation issues.
  2. Geomagnetic Storms & Aurora: If the solar flare is accompanied by a coronal mass ejection (CME), a massive burst of solar wind and magnetic fields released into space, it can lead to geomagnetic storms. These storms can induce electric currents in power grids, potentially causing power outages. However, they can also create stunning auroras (Northern and Southern Lights).
  3. Radiation Risk: Solar flares produce high levels of radiation that can pose a risk to astronauts in space or passengers in high-altitude flights. They’re also a concern for electronic systems on satellites and spacecraft.
  4. Effect on Satellites: The high-energy particles from a solar flare can damage satellites, leading to malfunctions or loss of data.

It’s important to note that Earth’s magnetic field and atmosphere protect humans on the ground from the harmful effects of solar flares; most of the concern is for space-borne technology and astronauts. However, in the event of a particularly strong solar flare, the consequences could be more severe. That’s why space weather monitoring organizations keep a close watch on solar activity.

SDO Artist's Concept

Artist’s concept of the Solar Dynamics Observatory (SDO). Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

NASA’s Solar Dynamics Observatory

NASA’s Solar Dynamics Observatory (SDO), launched in February 2010, is a mission dedicated to studying the Sun. It’s designed to help us understand the Sun’s influence on Earth and near-Earth space by studying the solar atmosphere on small scales of space and time and in many wavelengths simultaneously.

SDO’s primary goals are:

  1. Solar Interior Dynamics: To understand the solar interior and how the Sun’s magnetic field is generated and structured. It uses helioseismology, studying the oscillations in the sun, to map the interior of the sun.
  2. Magnetic Field: To understand how the Sun’s magnetic field is released into the heliosphere (the space around the Sun) and geospace in the form of solar wind, energetic particles, and variations in the solar irradiance.
  3. Solar Energy Release: To understand the sources of solar variability that influence life and society by studying how magnetic energy is converted to the kinetic energy of solar wind, radiant energy of light and heat, and magnetic energy in solar flares and mass eruptions.

The SDO includes a suite of instruments:

  1. Helioseismic and Magnetic Imager (HMI): It studies oscillations and magnetic fields at the solar surface, or photosphere.
  2. Atmospheric Imaging Assembly (AIA): It images the solar atmosphere in multiple wavelengths to link changes in the surface to interior changes. Its data includes images of the Sun in 10 wavelengths every 10 seconds.
  3. Extreme Ultraviolet Variability Experiment (EVE): It measures the Sun’s ultraviolet brightness, an important energy source that affects the Earth’s atmosphere and climate.

SDO is one of the missions in NASA’s Living With a Star (LWS) Program, which aims to understand the aspects of the Sun and the Earth’s space environment that affect life and society. The SDO data, continuously streaming down to Earth in near-real time, has transformed our understanding of the Sun and its effects on our planet.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

Michael Faraday의 정액 종이는 형광 염료에 디지털 방식으로 저장됩니다.

하버드 연구원들은 작은 장소의 에폭시 표면에 인쇄된 형광 염료 혼합물에 의존하는 데이터…

프로브는 수성 풍경의 멋진 클로즈업 뷰를 캡처합니다.

수성 상공을 비행하는 두 개의 위성이 촬영한 일련의 이미지는 행성의 분화구뿐만 아니라…

The Moon rocket test by NASA on Saturday did not go as planned | Void

View larger. | The base stage of the first flight of NASA’s…

과학자들은 대서양의 순환이 세기 중반쯤 붕괴될 것이라고 보고합니다.

펠리페 다나/AP 그린란드 Kulusuk 근처의 큰 빙산. 과학자들은 중요한 북대서양 해양 순환이…