Ramanarayanan Krishnamurthy는 “우리는 우리가 설명한 종류의 반응이 초기에 지구에서 일어났을 가능성이 가장 높다고 생각합니다.”라고 말했습니다.

반응은 단백질의 빌딩 블록을 생성하고[{” attribute=””>DNA: amino acids and nucleic acids.

Four billion years ago, the Earth looked very different than it does today. It was devoid of life and covered by a vast ocean. Over the course of millions of years, life emerged in that primordial soup. For a long time, researchers have theorized how molecules came together to spark this transition. Now, scientists at Scripps Research have discovered a new set of chemical reactions that use ammonia, cyanide, and carbon dioxide—all thought to be common on the early Earth—to generate amino acids and nucleic acids, the building blocks of proteins and DNA.

“We’ve come up with a new paradigm to explain this shift from prebiotic to biotic chemistry,” says Ramanarayanan Krishnamurthy, PhD, and an associate professor of chemistry at Scripps Research. “We think the kind of reactions we’ve described are probably what could have happened on early Earth.” Krishnamurthy is the lead author of the new paper that was published in the journal Nature Chemistry on July 28, 2022.

In addition to giving scientists insight into the chemistry of the early Earth, the newly discovered chemical reactions are also useful in certain manufacturing processes. For example, in the generation of custom-labeled biomolecules from inexpensive starting materials.

Earlier this year, Krishnamurthy’s team showed how cyanide can enable the chemical reactions that turn prebiotic molecules and water into basic organic compounds required for life. This one worked at room temperature and in a wide pH range, unlike previously proposed reactions. The scientists wondered whether, under the same conditions, there was a way to generate amino acids, which are more complex molecules that compose proteins in all known living cells.

In cells today, amino acids are generated from precursors called α-keto acids using both nitrogen and specialized proteins called enzymes. Scientists have discovered evidence that α-keto acids likely existed early in Earth’s history. However, many researchers have hypothesized that before the advent of cellular life, amino acids must have been generated from completely different precursors, aldehydes, rather than α-keto acids, since enzymes to carry out the conversion did not yet exist. But that idea has led to debate about how and when the switch occurred from aldehydes to α-keto acids as the key ingredient for making amino acids.

After their success in using cyanide to drive other chemical reactions, Krishnamurthy’s group suspected that cyanide, even without enzymes, might also help turn α-keto acids into amino acids. Because they knew nitrogen would be required in some form, they added ammonia—a form of nitrogen that would have been present on the early Earth. Then, through trial and error, they discovered a third key ingredient: carbon dioxide. With this mixture, they quickly started seeing amino acids form.

“We were expecting it to be quite difficult to figure this out, and it turned out to be even simpler than we had imagined,” says Krishnamurthy. “If you mix only the keto acid, cyanide, and ammonia, it just sits there. As soon as you add carbon dioxide, even trace amounts, the reaction picks up speed.”

Because the new reaction is relatively similar to what occurs inside cells today—except for being driven by cyanide instead of a protein—it seems more likely to be the source of early life, rather than drastically different reactions, the scientists say. The research also helps bring together two sides of a long-standing debate about the importance of carbon dioxide to early life, concluding that carbon dioxide was key, but only in combination with other molecules.

In the process of studying their chemical soup, Krishnamurthy and his colleagues discovered that a byproduct of the same reaction is orotate, a precursor to nucleotides that make up DNA and RNA. This indicates that the same primordial soup, under the right conditions, could have given rise to a large number of the molecules that are required for the key elements of life.

“What we want to do next is continue probing what kind of chemistry can emerge from this mixture,” says Krishnamurthy. “Can amino acids start forming small proteins? Could one of those proteins come back and begin to act as an enzyme to make more of these amino acids?”

Reference: “Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways” by Sunil Pulletikurti, Mahipal Yadav, Greg Springsteen and Ramanarayanan Krishnamurthy, 28 July 2022, Nature Chemistry.
DOI: 10.1038/s41557-022-00999-w

In addition to Krishnamurthy, authors of the study, “Prebiotic Synthesis of α-Amino Acids and Orotate from α-Ketoacids Potentiates Transition to Extant Metabolic Pathways,” are Sunil Pulletikurti, Mahipal Yadav and Greg Springsteen. 

This work was supported by funding from the NSF Center for Chemical Evolution (CHE-1504217), a NASA Exobiology grant (80NSSC18K1300) and a grant from the Simons Foundation (327124FY19).

READ  과학자들이 우주를 흐르는 놀라운 별의 강을 발견했습니다: ScienceAlert
답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

보잉 스타라이너(Starliner) 비행기가 국제우주정거장 밖에 주차된 동안 5번의 누출로 어려움을 겪고 있다.

~ 후에 도킹이 지정되지 않았습니다. 지난 주 국제 우주 정거장에서 보잉은 NASA…

유럽 ​​우주국 (European Space Agency), 11 년 만에 처음으로 우주 비행사 채용

유럽 ​​우주국 (European Space Agency)이 월요일에 발표 한 성명에 따르면 신청서는 3…

SpaceX Falcon 9 CRS-29 로켓 발사

이벤트 세부정보 페이로드 블로그 SpaceX 팔콘 9 CRS NG-20 2024년…

NASA는 우주 정거장의 deorbit 모듈에 최대 10억 달러를 지출할 계획입니다.

워싱턴 – NASA는 10년 안에 국제우주정거장 궤도를 이탈하는 예인선에 거의 10억 달러를…